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GSP?!
from Wikipedia: “The cluster variational method and the survey propagation algorithms are 
two different improvements to belief propagation. The name generalized survey propagation 

(GSP) is waiting to be assigned to the algorithm that merges both generalizations.”



Models we are interested in

Spin glasses on regular lattices
Edwards-Anderson (EA) model

Topologies with many short loops.
Quenched disorder, frustration...

are Gaussian or ±1 i.i.d. r.v. 
Ising spins    =±1

Jij

σi

H = −
∑

<ij>

Jijσiσj , P ["σ] ∝ e−βH, β =
1
T



±J EA model
3D  L=32

T=0.7

Complex systems at 
low temprature

with many state and 
metastable states



Two type of questions

Average over the ensemble
mean free-energy, energy and entropy 
dominated by typical samples

Properties of a given sample
free-energy, energy, entropy and
marginal probabilities



Two kind of results

Analytic results for quantities 
averaged over the ensemble

An algorithm for computing 
marginals on a given sample

Many links between the two...



Kikuchi’s CVM
F =

∑

!σ

H[!σ]P [!σ]− T
∑

!σ

P [!σ] log P [!σ]

Energy: easy Entropy: difficult

Mean field

Bethe

CVM (plaquette)

P [!σ] =
∏

<ij>

Pij(σi,σj)
Pi(σi)Pj(σj)

∏

i

Pi(σi)

P [!σ] =
∏

i

Pi(σi)



Bethe free-energy

Lagrange multipliers are the
messages in the MPA

F = −
∑

<ij>

Jij

∑

σi,σj

σiσjPij

+T
∑

<ij>

∑

σi,σj

Pij lnPij − T
∑

i

(di − 1)
∑

σi

Pi lnPi

+ constraints imposing normalizations
   and consistency

∑

σj

Pij(σi,σj) = Pi(σi)



Kikuchi free-energy

F =
∑

r

cr

(
∑

xr

PrEr + T
∑

xr

Pr lnPr

)

to be minimized under normalization
and compatibility constraints
∑

xr\s

Pr = Ps

possibly with a fast MPA (GBP) sending
messages = Lagrange multipliers



Alternative expression for 
the Kikuchi free-energy

Partial derivatives w.r.t.     -> BP/GBP eqs.
No P ln P term

F = −
∑

r

cr ln




∑

xr

ψr(xr)
∏

mrs∈M(r)

mrs





mrs



Plaquette CVM

2 kind of messages

2 kind of equations
U

u u1 u2

= =

m ∝ e−βu



Plaquette CVM

2 kind of messages

2 kind of equations
U

u u1 u2

= =

Single and triple messages
appear together!

m ∝ e−βu



Introducing RSB

The cavity interpretation of messages 
turns out to be wrong beyond Bethe

We came back to the replica trick and 
the hierarchical ansatz

We obtained general expressions for 
the free-energy at any level of RSB 
and any set of regions in the CVM



1RSB CVM for a given 
sample (GSP)

messages become functions of messages
q(u) Q(U, u1, u2)and             satisfying   region∀

=N1

q(u) =
∫

dQ1()dQ2()dq1()dq2()dq3() δ[u − f()] Nm
1

〈Nm
1 〉

Q1

Q2

q1

q2

q3
q



1RSB CVM for a given 
sample (GSP)

=N3

∫
Q(U, x1, x2)q1(u1 − x1)q2(u2 − x2) =

1
〈Nm

3 〉

∫
dQ1()dQ2()dQ3()dq3()dq4()dq5()dq6()

δ[U − F ()]δ[u1 − f1()]δ[u2 − f2()]Nm
3

q1

q2

Q



1RSB CVM for a given 
sample (GSP)

From fixed point functions      and

compute the replicated free-energy

and by Legendre trasform the complexity

Marginals will depend on the free-energy value

q(u) Q(U, u1, u2)

Σ(f)

F (m) = −
∑

r

cr ln
∫

dQ() . . . dq() [Nr()]m



RS CVM average case

No marginals, but just free-energy

Average over the disorder

Traslation invariance on the lattice

Just one equation per kind of message

F = −
∑

r

cr ln〈Nr〉J



RS CVM average case

∫
Q(U, x1, x2)q(u1 − x1)q(u2 − x2)dx1dx2 =

∫
dQ()dQ()dQ()dq()dq()dq()dq()

δ[U − F ()]δ[u1 − f1()]δ[u2 − f2()]

q(u) =
∫

dQ()dQ()dq()dq()dq()δ[u− f()]



RS CVM average case
(difficulties)

     and             are not distributions

nice cavity interpretation fails

some numerical problems

signed populations or histograms

Fourier transform to solve the convolution

q(u) Q(U, u1, u2)



Analytical results for the 
Edwards-Anderson model
Bethe:
Solve for

Paramagnetic (          ):

Solve for 

Q(U, u1, u2) = δ(U)δ(u1)δ(u2)
q(u)

for
forbroad and

symmetric
∃ TBethe

c : q(u) =
{

δ(u) T > TBethe
c

T < TBethe
c

Q(U, u1, u2) = Q(U)δ(u1)δ(u2) q(u) = δ(u)
mi = 0 ∀i

Q(U)



RS CVM for EA 2D

tanh(βU) d= tanh(β(J1+U1)) tanh(β(J2+U2)) tanh(β(J3+U3))

-2 -1 1 2

0.5

1

1.5

2

2.5Q(U)

T = 0.1
at

U fields concentrate over the integers for T->0



RS CVM for ±J EA 2D

Entropy is always positive
Improves the GS energy
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FIG. 3: Free energy vs. Temperature of the paramagnetic solution in the plaquette approximation (solid) for the 2DEA model
with bimodal couplings. The paramagnetic Bethe solution (dotted) is unstable below T = 1.5186 (dot), the model on the Bethe
lattice has a spin-glass phase transition at this temperature. The straight lines are E0−TS0 where E0 (S0) is the ground state
energy (entropy) for the true model (dashed) and for the Bethe lattice (solid) from numerics.

Gaussian Distributed Couplings - We considered also the 2DEA model with Gaussian distribution of the couplings.
Again we find that the paramagnetic phase is thermodynamically stable down to zero temperature where it predicts a
vanishing entropy according to what is expected. In this case the CVM estimates are even better than in the previous
case. In fig. 4 we plot the free energy as a function of the temperature, the ground state energy reads E0 = −1.3210(2)
to be compared with the numerical prediction E0 = −1.31479(2) [21].
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FIG. 4: Free energy vs. Temperature of the paramagnetic solution in the plaquette approximation (solid) for the 2DEA model
with Gaussian couplings. The dot at T = 0 corresponds to the value of the ground state energy of the actual model.

B. Triangular and Hexagonal Lattices

We studied the spin-glass with bimodal distribution of the couplings defined on the triangular lattice and on
the hexagonal (a.k.a. honeycomb, brickwork) lattice, using respectively the triangle and the hexagon as the basic
plaquette, see fig. 5. Much as in the square lattice case, the messages are parametrized by a single function Q(U)
in the RS paramagnetic phase representing respectively the triangle-to-couple and hexagon-to-couple messages. In
both cases we found again that the paramagnetic phase is thermodynamically consistent down to zero temperature
in the sense that the entropy of the paramagnetic solution is always positive. The function Q(U) converges on the
integers for the triangular and on the semi-integers for the honeycomb lattice predicting a non-vanishing entropy at
zero temperature in both cases. Nevertheless in the next section we will see that the triangle approximation predicts
a spurious spin-glass transition at T = 1.0, improving however the Bethe estimate T = 2.07.

In fig. 6 we plot the free energy of the triangular lattice as a function of the temperature. The most accurate
predictions for the ground state energy and entropy come from a Pfaffian method [25], giving E0 = −1.7085(1) and

Bethe
RS CVM

TBethe
c

Text

true



RS CVM for
Gaussian EA 2D
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RS CVM for EA 2D

Local stability of the solution w.r.t. u, u1, u2 != 0

a =
∫

q(u)u2du aij(U) =
∫

Q(U, u1, u2)uiujdu1du2 j = 1, 2



RS CVM for EA 2D

Local stability of the solution w.r.t. u, u1, u2 != 0

a =
∫

q(u)u2du aij(U) =
∫

Q(U, u1, u2)uiujdu1du2 j = 1, 2

small



RS CVM for EA 2D

Local stability of the solution w.r.t. u, u1, u2 != 0
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FIG. 8: Plot of the inverse of the logarithm of the determinant of the Jacobian vs. Temperature for the 2D square lattice with
bimodal interactions (see text). It is strictly positive down to zero temperature thus there is no second-order spin-glass phase
transition in the model at finite temperature.

the study of a second-order phase transition can be extended straightforwardly to general dimension provided some
care is taken in order for the computation of the Jacobian matrix to be done in reasonable time. In practice we have
introduced auxiliary functions to represents the convolutions of Q(U) with itself in order that the integrals needed to
compute the elements of the Jacobian remain three-dimensional as in 2D.

In dimension higher than two the EA model is largely believed to display a second-order spin-glass phase transition.
In fig. 9 we plot the value of the smallest eigenvalue of the Jacobian matrix of the 3DEA Ising model. We see that
unfortunately it does not vanish at all, although it decreases considerably around the temperature where the actual
model is believed to have a phase transition, T ∼ 1.1. The plaquette approximation leads to a disaster in 3D: if we did
not know the actual behavior of the model we could wrongly think that much as in 2D the paramagnetic phase is stable
down to zero temperature; however a clear hint that this cannot be the case comes from the study of the free energy.
In fig. 10 we plot the free energy as a function of the temperature, this shows that the entropy remains positive but
the free energy has the wrong convexity at low temperature and negative specific heat. Another indication that the
paramagnetic solution is wrong in 3D at low temperature comes from the fact that at zero temperature the solution
does not converge on integers values, at variance with the 2D case studied in the previous section. We have also
considered different distributions of the couplings (Gaussian and Diluted) and check that unfortunately the plaquette
approximation still does not predict any phase transition in 3D. The present approach is able to detect a second-order
phase transition where the variables (a, a11(U), a12(U)) are small, it is also possible that the plaquette approximation
makes the transition first-order but we leave the investigation of this point for future work. Note that the smallest
eigenvalue gets very near to zero therefore we expect that in an approximation with a basic region slightly larger than
the plaquette we should be able to recover the expected phase transition.
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FIG. 9: Plot of the smallest eigenvalue of the Jacobian around the expected critical temperature T = 1.1 for the plaquette
approximation of the 3DEA model with bimodal interactions. Since it does not vanish the CVM predicts no second-order phase
transition in this approximation.
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Summary of analytical 
results for the ±J EA model

2D

3D

Tc = 0 T plaq
c = 0 TBethe

c = 1.5186...

1.2 1.4 1.6 1.8 2 T

0.025

0.05

0.075

0.1

0.125

0.15

Λsmall TBethe
c

Tc

first order
transition or
need to
consider a 
larger region
(the cube)



Summary of analytical 
results for the EA model
4D

Tc = 2.03 T plaq
c = 2.2 TBethe

c = 2.515...

1.8 1.9 2.1 2.2 2.3 2.4
T

0.01

0.02

0.03

Λsmall



Functions, not distributions!

a11(U) =
∫

Q(U, u1, u2) u2
1 du1du2

23

eigenvector of the Jacobian matrix. In other words we have:

(a, a11(U), a12(U)) = b(Tc − T )(λ(0)
a ,λ(0)

a11
(U),λ(0)

a12
(U)) (92)

where (λ(0)
a ,λ(0)

a11(U),λ(0)
a12(U)) are the components of the eigenvector corresponding to the zero eigenvalue and b is some

numerical constant that cannot be determined solely from the knowledge of the Jacobian but needs the computation
of the quadratic terms. Indeed the determination of the proportionality factor requires to include the next order
terms analogous to the term B(T ) in eq. (84) at the Bethe level. In fig. 12 we plot the function a11(U) (modulo an
unknown positive constant scaling as Tc − T , i.e. the non-normalized eigenvector) at a generic temperature slightly
below Tc = 2.2 for the 4DEA with bimodal interactions, the proportionality factor is such that the a component is
positive, a = 0.08490. We see that a11(U) is negative for some values of U and this is puzzling, indeed we recall that
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FIG. 12: The function a11(U) (modulo an unknown positive constant scaling as Tc−T ) at a generic temperature slightly below
Tc = 2.2 for the 4DEA with bimodal interactions, see text. It is negative for some values of U meaning that the function
Q(U, u1, u2) is not positive definite.

the definition of a11(U) is:

a11(U) =
∫

Q(U, u1, u2) u2
1 du1 du2 (93)

thus if a11(U) is negative below the critical temperature for some U it follows that the message function Q(U, u1, u2)
cannot be positive definite! The first consequence of this fact is that the function Q(U, u1, u2) cannot be interpreted as
a distribution function of the messages (U, u1, u2) on a given sample: had we followed that interpretation we should
have concluded that the whole approach is inconsistent. In the next section we will discuss this issue in more depth
and see that instead it is the naive interpretation that is actually inconsistent, in particular we will show that the
message functions Q(U, u1, u2) need not to be positive definite while the beliefs of the regions do.

We mention that negative a11(U) are found also if we study the response of the system to the presence of a small
field H in the high-temperature phase. In this case we find non-zero values of (a, a11(U), a12(U)) of order O(H2) that
can be determined inverting the Jacobian matrix and applying it to the O(H2) perturbation, and again we find that
while a is positive a11(U) is negative for some values of U . This effect survives in the infinite temperature limit. In
this regime we find that at leading order the variables to be considered are a and a11 =

∫
a11(U) dU and an explicit

computation shows that a " H2β2 and a11 " −3β6H2 in any dimension.
We note that the fact that the messages are not positive definite means that they cannot be simply represented as

populations and this, together with the presence of convolutions in the variational equations, is a technical challenge
to be overcome in order to obtain quantitative results for general CVM approximations and for all regions of the
phase diagram.

We also mention that the Jacobian approach presented here can be also applied to study the phase diagram of
models with ferromagnetically biased interactions, in this case one would be interest in the location of the ferromagnetic
transition and the variables to be used should be ã =

∫
q(u)u du and ã1(U) =

∫
Q(U, u1, u2)u1du1du2dU .

IX. PHYSICAL INTERPRETATION OF THE BELIEFS

In the previous section we have seen that the messages functions Q(U, u1, u2) of the plaquette CVM approximation
in general dimension are not definite positive and cannot be interpreted as distribution functions. In this section we
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FIG. 12: The function a11(U) (modulo an unknown positive constant scaling as Tc−T ) at a generic temperature slightly below
Tc = 2.2 for the 4DEA with bimodal interactions, see text. It is negative for some values of U meaning that the function
Q(U, u1, u2) is not positive definite.
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FIG. 13: The function q11(U) =
R

P (U, u1, u2)u
2
1 du1 du2 (modulo an unknown positive constant scaling as Tc−T ) at a generic

temperature slightly below Tc = 2.2 for the 4DEA with bimodal interactions, see text. It is always positive as it should since
P (U, u1, u2) is a distribution.
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FIG. 14: The function q11(U)− q12(U) =
R

P (U, u1, u2)(u1 − u2)
2/2 du1 du2 (modulo an unknown positive constant scaling as

Tc−T ) at a generic temperature slightly below Tc = 2.2 for the 4DEA with bimodal interactions, see text. It is always positive
as it should since P (U, u1, u2) is a distribution.

are both contained in the NW plaquette and cannot be uncorrelated. Furthermore we may notice that this equation
remains the same if we consider the CVM approximation in which the basic region is a generic L × L plaquette.
Once again on a given instance we would have four messages entering on a point but when we average over different
samples these messages are correlated: thus it is crucial to understand that the function q(u) has nothing to do with
the distribution of the messages on a single sample. Actually the messages are auxiliary objects of the approach while
the true physical objects are the beliefs.

Similarly looking at the equation for the beliefs of the couple of points eq. (99) we see that if we interpreted
Q(U, u1, u2) as the distribution over different samples of the messages fields (U, u1, u2) and q(u) as that of u, we
should have concluded that the corresponding messages are spatially uncorrelated and again we see that this is in
contrast with the key CVM assumption that objects in the same basic region (the plaquette) are correlated.

Finally if we go back to the definition of the messages functions we see that a generic message ρ(σ1,σ2) in terms
of replicated spins must be positive function, instead the corresponding function Q(U, u1, u2) is some kind of integral
transform of ρ(σ1,σ2) and need not to be positive.

We are now in position to discuss the relationship between the replica CVM approach and the earlier results of the
Tohoku group [9–11]. In 1980 Katsura, Fujiki and Nagahara were the first to apply CVM ideas to spin-glasses and
studied the phase diagrams of various models. They started from the CVM message-passing equations on a given
sample and introduced the functions q(u) and Q(U, u1, u2) intended to be the sample-to-sample distributions of the
messages (actually they wrote Q(U, u1, u2) = Q(U)g(u1)g(u2)). As we discussed in section VI, these assumptions
lead to the same set of equations for q(u) and Q(U, u1, u2) that we have obtained through Replica CVM at the RS
level. However, even if the equations are the same, the starting assumptions are inconsistent and in the end the
actual solutions q(u) and Q(U, u1, u2) turn out not to be distributions. Thus we think that in general Replica CVM



MPA for solving a given 
sample of 2D EA model

Set u=0 and solve iteratively
for U’s according to eq.

=



Converges for any T

Gaussian 2D EA model

β

τtyp

ε = 10−1

ε = 10−10

BP converges only for          !!β < 0.84



Comparison with MC

Energy vs. β

MC
MPA



Two spins marginals

〈σiσj〉MPA

〈σiσj〉MC

β = 0.1



Two spins marginals

〈σiσj〉MPA

〈σiσj〉MC

β = 1.1



Two spins marginals

〈σiσj〉MPA

〈σiσj〉MC

β = 2.1



Stronger test: find GS

MPA + decimation or reinforcement
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MPA + decimation or reinforcement
never finds GS !!



Stronger test: find GS

MPA + decimation or reinforcement
never finds GS !!

exact GS energy



Stronger test: find GS

MPA + decimation or reinforcement
never finds GS !!

mean relative error:
0.0013 for Gauss
0.00078 for ±J

exact GS energy



It works on a 3D lattice!

energy

entropy

β

βc
3D Gauss EA L=50



Conclusions
By the Replica CVM we derived GSP eqs.
The solution is a computational challenge!
Very good approximation scheme:

average case, no transition in 2D EA model

single sample, MPA for the paramagnetic phase

Future work
find the AT line (paramagnetic phase in field)
going in the SG phase with GSP:

1RSB factorized solution

few first moments of Q(U,u1,u2)


